Detecting content adaptive scaling of images for forensic applications
نویسندگان
چکیده
Content-aware resizing methods have recently been developed, among which, seam-carving has achieved the most widespread use. Seam-carving’s versatility enables deliberate object removal and benign image resizing, in which perceptually important content is preserved. Both types of modifications compromise the utility and validity of the modified images as evidence in legal and journalistic applications. It is therefore desirable that image forensic techniques detect the presence of seam-carving. In this paper we address detection of seam-carving for forensic purposes. As in other forensic applications, we pose the problem of seam-carving detection as the problem of classifying a test image in either of two classes: a) seam-carved or b) non-seam-carved. We adopt a pattern recognition approach in which a set of features is extracted from the test image and then a Support Vector Machine based classifier, trained over a set of images, is utilized to estimate which of the two classes the test image lies in. Based on our study of the seam-carving algorithm, we propose a set of intuitively motivated features for the detection of seam-carving. Our methodology for detection of seam-carving is then evaluated over a test database of images. We demonstrate that the proposed method provides the capability for detecting seam-carving with high accuracy. For images which have been reduced 30% by benign seam-carving, our method provides a classification accuracy of 91%.
منابع مشابه
Detection of Copy-Move Forgery in Digital Images Using Scale Invariant Feature Transform Algorithm and the Spearman Relationship
Increased popularity of digital media and image editing software has led to the spread of multimedia content forgery for various purposes. Undoubtedly, law and forensic medicine experts require trustworthy and non-forged images to enforce rights. Copy-move forgery is the most common type of manipulation of digital images. Copy-move forgery is used to hide an area of the image or to repeat a por...
متن کاملDetecting and counting vehicles using adaptive background subtraction and morphological operators in real time systems
vehicle detection and classification of vehicles play an important role in decision making for the purpose of traffic control and management.this paper presents novel approach of automating detecting and counting vehicles for traffic monitoring through the usage of background subtraction and morphological operators. We present adaptive background subtraction that is compatible with weather and ...
متن کاملImage Statistical Frameworks for Digital Image
IMAGE STATISTICAL FRAMEWORKS FOR DIGITAL IMAGE FORENSICS by Patchara Sutthiwan The advances of digital cameras, scanners, printers, image editing tools, smartphones, tablet personal computers as well as high-speed networks have made a digital image a conventional medium for visual information. Creation, duplication, distribution, or tampering of such a medium can be easily done, which calls for...
متن کاملDeep Learning for Detecting Processing History of Images
Establishing the pedigree of a digital image, such as the type of processing applied to it, is important for forensic analysts because processing generally affects the accuracy and applicability of other forensic tools used for, e.g., identifying the camera (brand) and/or inspecting the image integrity (detecting regions that were manipulated). Given the superiority of automatized tools called ...
متن کاملDetecting false captioning using common-sense reasoning
Detecting manipulated images has become an important problem in many domains (including medical imaging, forensics, journalism and scientific publication) largely due to the recent success of image synthesis techniques and the accessibility of image editing software. Many previous signal-processing techniques are concerned about finding forgery through simple transformation (e.g. resizing, rota...
متن کامل